o SOFTWARE
DEVELOPMENT

The Vibe Code Governance Playbook

How to Scale, Secure, and Sustain
Al-Generated Code in Your Organization

Your team shipped faster than ever. Now what?



The Vibe Coding Revolution (And Its Hidden Costs)

Something shifted in the last year. Engineers who used to spend days on a feature are now shipping in hours. Cursor,
ChatGPT, Codex, Claude—they've changed how code gets written. Product teams are seeing ideas come to life before the

sprint ends. It feels like a superpower.

And itis. Butit's also a trap.

Here's what we keep seeing: A prototype gets built in a weekend. It works. The demo goes well. Stakeholders get excited.
Someone says "let's ship it." And suddenly that weekend project is in production, handling real customers, with code that
was never architected, never reviewed for security, and definitely never designed to scale.

Six months later, that same team is drowning. Every new feature breaks something. Nobody understands half the
codebase. The engineer who vibe-coded the original thing has moved on or forgotten how it works. And now there's a

compliance audit coming.

Sound familiar?

SOFTWARE

DEVELOPMENT




The Three Stages of Vibe Code Debt

We've watched this play out at enough companies to see the pattern. It usually goes like this:

What It Looks Like

The Real Cost

The Prototype Trap

A vibe-coded MVP gets traction.

Leadership says "scale it."

No tests. Hardcoded everything. Patterns that made sense to
ChatGPT but not to your team.

The Maintenance Spiral

Features keep shipping, but
everything takes longer. Bugs
multiply.

Your best engineers are debugging instead of building. New hires

take months to get productive.

The Reckoning

An audit. A security incident. A
due diligence process.

You're facing a rebuild at the worst possible moment. And
everyone's asking how it got this bad.

SOFTWARE

DEVELOPMENT




A Governance Framework That Actually Works

Look, we're not going to tell you to ban Al coding tools. That ship has sailed, and honestly, they're too useful to give up. The

guestion isn't whether your team uses them. It's whether you have any idea what's happening with the code they produce.

Step 1: Figure Out What You're Dealing With

Before you can fix anything, you need to know what's out there. Go through your codebase and sort Al-generated code into

three buckets:

Category What It s What To Do
D . tot ,int I ipt bod . .
Throwaway emos, prototypes .|n ernal scripts nobody Label it clearly. Keep it away from prod.
relies on
i It's in production, but it's held together with Put it on the refactor list. Give someone
Transitional .
duct tape ownership.
- Touchi , cust data, . I
Critical Path ouching revenue .cus omer data, or Stop what you're doing and review it now.
compliance

SOFTWARE

DEVELOPMENT




A Governance Framework That Actually Works

Step 2: Set Up Quality Gates

Al-generated code should go through the same checks as everything else. If you don't have these in place, start here:

« Minimum test coverage before anything gets merged
« Security scans that actually run (not ones everyone skips)
* Architecture review for anything touching data, auth, or external APIs

« Documentation requirements (even a few sentences explaining what the code does)

Step 3: Train Your Team to Spot Al Code Problems

Al-generated code fails in predictable ways. Your reviewers should know what to look for:

+ Packages that don't exist or were deprecated years ago
* Patterns that work in tutorials but don't fit your stack

+ Missing error handling (Al loves the happy path)

* 50 lines of code for something that should take 5

« Hardcoded secrets, SQL injection vulnerabilities, the classics

SOFTWARE

DEVELOPMENT




Refactor or Rebuild? How to Decide

Not everything needs to be thrown away. Sometimes a messy codebase can be cleaned up. Sometimes it can't. Here's how

to tell:

Ask Yourself

You Can Refactor If...

You Probably Need to Rebuild If...

Is the architecture sound?

The bones are good, just messy

It's spaghetti all the way down

Can you add tests?

Piece by piece, yeah

You'd have to rewrite it to make it testable

Does anyone understand it?

At least one person can explain it

The person who built it left. Nobody knows.

How urgent is this?

You have time for gradual fixes

It's breaking now and needs to work
yesterday

How much is broken?

Less than half

More than half

SOFTWARE

DEVELOPMENT




A Simple Vibe Code Policy

You don't need a 50-page document. You need clear guidelines that people will actually follow. Start with something like this:

Go Ahead (No Review Needed) Needs a Second Set of Eyes Don't Even Try It

* Internal scripts and automation + Anything going to production * Security-critical code without an expert
looking at it
+ Prototypes that won't leave your laptop + Code that touches customer data
+ Compliance workflows without audit
+ Boilerplate and scaffolding + Anything calling external APIs trails
+ Docs and test generation * Regulated environments (healthcare, + Core business logic that nobody reviews

finance, etc.)

SOFTWARE

DEVELOPMENT




The Real Problem: Integration

Here's what most people miss: the hard part isn't the code itself. It's connecting it to everything else.

Al tools are great at generating isolated solutions. But they have no idea about your:

« Existing data models

* Auth patterns

+ Logging setup

« How you actually deploy things

+ That weird vendor API you've been working around for years

This is where vibe-coded projects die. The prototype works on someone's laptop. Integrating it into your real environment

breaks everything.

What we do at Hoyack

We take vibe-coded prototypes and make them production-ready. We connect them to your existing systems, add proper
error handling, and make sure compliance isn't an afterthought. It's not glamorous work, but it's the work that actually

matters.

SOFTWARE

DEVELOPMENT




Your Checklist

Print this out. Stick it on the wall. Work through it.

Action Item
Find all the Al-generated code in production []
Sort it by risk (throwaway, transitional, critical) [
Set up quality gates that people actually use []
Train reviewers on Al-specific failure patterns []
Write down a policy (even a short one) []
Assign someone to own the transitional/critical stuff []
Budget time/money to actually fix things []
L Map out what needs to integrate with what [] )

SOFTWARE

DEVELOPMENT




Let's Talk

Vibe coding isn't going anywhere. It's too useful. But without some guardrails, it creates the kind of technical debt that sinks

companies.

Brandon, our CEO, has spent the last year helping CTOs dig out of exactly this situation. Auditing codebases. Building

governance frameworks. Refactoring the stuff that actually matters. If any of this sounds familiar, it might be worth a

conversation.

Book a call. We'll figure it out together.

SCHEDULE A CONSULTATION

SOFTWARE

DEVELOPMENT



https://hoyack.com/contact/

The Vibe Code Governance Playbook

How to Scale, Secure, and Sustain
Al-Generated Code in Your Organization

o SOFTWARE
EEEEEEEEEEE



